Inelastic state-to-state scattering of OH (2Pi3/2, J=3/2,f) by HCl.
نویسندگان
چکیده
Parity resolved state-to-state cross sections for inelastic scattering of OH (X2Pi) by HCl were measured in a crossed molecular beam experiment at the collision energy of 920 cm(-1). The OH (X2Pi) radicals were prepared in a single quantum state, Omega=3/2, J=3/2, MJ=3/2, f, by means of electrostatic state selection in a hexapole field. The rotational distribution of the scattered OH radicals by HCl was probed by saturated LIF spectroscopy of the 0-0 band of the A 2Sigma+ - X 2Pi transition. Relative state-to-state cross sections were measured for rotational excitations up to J=9/2 within the Omega=3/2 spin-orbit manifold and up to J=7/2 within the Omega=1/2 spin-orbit manifold. A propensity for spin-orbit conserving transitions was found, but no propensity for excitation into a particular Lambda-doublet component of the same rotational state was evident. The data are presented and discussed in comparison with results previously obtained for collisions of OH with CO (Ecoll=450 cm(-1)) and N2 (Ecoll=410 cm(-1)) and with new data we have measured for the OH+CO system at a comparable collision energy (Ecoll=985 cm(-1)). This comparison suggests that the potential energy surface (PES) governing the interaction between OH and HCl is more anisotropic than the PES's governing the intermolecular interaction of OH with CO and N2.
منابع مشابه
Steric effects in state-to-state scattering of OH (2pi(3/2),J=3/2,f) by HCl.
In this paper we address stereo-dynamical issues in the inelastic encounters between OH (chi2pi) radicals and HCl (chi1sigma+). The experiments were performed in a crossed molecular-beam machine at the nominal collision energy of 920 cm(-1). Prior to the collisions, the OH molecules were selected using a hexapole in a well-defined rotational state v=0, omega=32, J=32, M(J)=32, f, and subsequent...
متن کاملState-to-state inelastic scattering of OH by HI: a comparison with OH-HCl and OH-HBr.
Relative state-to-state cross sections and steric asymmetries have been measured for the scattering process: OH (X (2)Pi(32),v=0,J=32,M(J)=32,f)+HI ((1)Sigma,v=0,J<4)-->OH (X (2)Pi,v=0,Omega=12,J=12-52 and Omega=32,J=32-92,ef)+HI, at 690 cm(-1) collision energy. Comparison with the previously studied systems OH-HCl and OH-HBr reveals relevant features of the potential energy surfaces of these m...
متن کاملState-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms.
The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce molecular beams with a tunable velocity. These tamed molecular beams offer interesting perspectives for precise crossed beam scattering studies as a function of the collision energy. The method has advanced sufficiently to compete with state-of-the-art beam methods that are used for scattering...
متن کاملResonances in rotationally inelastic scattering of OH(X2Π) with helium and neon.
We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X(2)Π, j = 3/2, F(1), f) radicals with He and Ne atoms. We calculate new ab initio potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare well with the recent crossed beam scattering experiment of Kirste et al. [Phys. Rev. A 82, 042717 (2010)]. We id...
متن کاملScattering of Stark-decelerated OH radicals with rare-gas atoms
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH (X 2Π3/2, J = 3/2, f) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D2 as a function of the collision energy between ∼ 70 cm and 400 cm. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 122 7 شماره
صفحات -
تاریخ انتشار 2005